High School

What would be the potential energy of a triceps muscle using a rubber band with a spring constant (k) of 25.0 N/m? Assume that the displacement (x) is 35.9 mm.

Answer :

The potential energy of the triceps muscle when using the rubber band with a spring constant [tex]\( k = 25.0 \, \text{N/m} \)[/tex] and stretched to a displacement [tex]\( x = 35.9 \, \text{mm} \)[/tex]is approximately[tex]\( 2.06495 \times 10^{-5} \, \text{N} \cdot \text{m} \).[/tex]

To find the potential energy stored in the triceps muscle when using a rubber band with a spring constant [tex]\( k = 25.0 \, \text{N/m} \)[/tex] and stretched to a displacement [tex]\( x = 35.9 \, \text{mm} \),[/tex] we can use the formula for the potential energy stored in a spring:

[tex]\[ U = \frac{1}{2} k x^2 \][/tex]

where:

- [tex]\( U \)[/tex] is the potential energy stored in the spring,

- [tex]\( k \)[/tex] is the spring constant,

- [tex]\( x \)[/tex] is the displacement from the equilibrium position.

First, let's convert the displacement [tex]\( x \)[/tex] from millimeters to meters:

[tex]\[ x = 35.9 \, \text{mm} = 35.9 \times 10^{-3} \, \text{m} \][/tex]

Now, we can use the formula to find the potential energy:

[tex]\[ U = \frac{1}{2} \times 25.0 \, \text{N/m} \times (35.9 \times 10^{-3} \, \text{m})^2 \]\[ U = \frac{1}{2} \times 25.0 \times (1.28721 \times 10^{-3})^2 \, \text{N} \cdot \text{m} \]\[ U = \frac{1}{2} \times 25.0 \times 1.65196 \times 10^{-6} \, \text{N} \cdot \text{m} \]\[ U = \frac{1}{2} \times 4.1299 \times 10^{-5} \, \text{N} \cdot \text{m} \]\[ U = 2.06495 \times 10^{-5} \, \text{N} \cdot \text{m} \][/tex]

So, the potential energy of the triceps muscle when using the rubber band with a spring constant [tex]\( k = 25.0 \, \text{N/m} \)[/tex] and stretched to a displacement [tex]\( x = 35.9 \, \text{mm} \)[/tex]is approximately[tex]\( 2.06495 \times 10^{-5} \, \text{N} \cdot \text{m} \).[/tex]

Other Questions