College

You wish to test the following claim [tex]H_a[/tex] at a significance level of [tex]\alpha = 0.01[/tex].

\[
\begin{array}{l}
H_o: \mu_1 = \mu_2 \\
H_a: \mu_1 < \mu_2
\end{array}
\]

You obtain the following two samples of data.

**Sample #1**

\[
\begin{array}{|r|r|r|r|}
\hline
72 & 63.2 & 58.4 & 73.2 \\
\hline
62.7 & 69.2 & 76.6 & 73.5 \\
\hline
73.5 & 70.6 & 83 & 57.5 \\
\hline
86.9 & 78.4 & 77.5 & 70 \\
\hline
78.4 & 59.3 & 76.6 & 78.4 \\
\hline
82.6 & 74.5 & 94.2 & 69.6 \\
\hline
75.4 & 86.9 & 71.3 & 75.1 \\
\hline
77.5 & 59.3 & 96.2 & 71 \\
\hline
94.2 & 83.7 & 78.4 & 77.8 \\
\hline
67.4 & 71.6 & 99.1 & 97.5 \\
\hline
96.2 & 86.1 & 67 & 90.5 \\
\hline
65.2 & 51.4 & 66.5 & 91.1 \\
\hline
82.6 & 68.1 & 104.4 & 69.6 \\
\hline
66.5 & 97.5 & 85.2 & 91.8 \\
\hline
\end{array}
\]

**Sample #2**

\[
\begin{array}{|r|r|r|r|}
\hline
62.9 & 64 & 96.5 & 105.8 \\
\hline
66.7 & 64.6 & 68.2 & 75.6 \\
\hline
97.3 & 59.5 & 71.4 & 69.6 \\
\hline
76 & 82.1 & 91.7 & 64 \\
\hline
74.3 & 78.8 & 68.7 & 71.8 \\
\hline
67.2 & 105.8 & 88 & 67.2 \\
\hline
75.6 & 64 & 85.6 & 77.2 \\
\hline
57 & 69.6 & 56 & 84.2 \\
\hline
79.6 & 85.6 & 72.7 & 64 \\
\hline
102.6 & 90.6 & 79.2 & 89 \\
\hline
100.2 & 88 & 93 & 76 \\
\hline
75.6 & 64 & 67.2 & 95.7 \\
\hline
59.5 & 56 & 95 & 88 \\
\hline
64 & 69.2 & 95.7 & 99.2 \\
\hline
74.3 & & & \\
\hline
\end{array}
\]

What is the test statistic for this sample? (Report answer accurate to three decimal places.)

Test statistic [tex]=[/tex] [tex]\square[/tex]

What is the p-value for this sample? For this calculation, use the degrees of freedom reported from the technology you are using. (Report answer accurate to four decimal places.)

[tex]p[/tex]-value [tex]=[/tex] [tex]\square[/tex]

Answer :

We wish to test

[tex]$$
H_0: \mu_1=\mu_2 \quad \text{vs.} \quad H_a: \mu_1<\mu_2
$$[/tex]

at a significance level of [tex]$\alpha=0.01$[/tex]. Given the two samples (Sample #1 and Sample #2), we use a two‐sample [tex]$t$[/tex]–test that does not assume equal variances (often called Welch’s [tex]$t$[/tex]–test).

Step 1. Compute the sample statistics.

For Sample #1 we have:
- Sample size: [tex]$n_1=56$[/tex]
- Sample mean: [tex]$\bar{x}_1\approx 77.1768$[/tex]
- Sample variance: [tex]$s_1^2\approx 144.9905$[/tex] (with sample standard deviation [tex]$s_1\approx 12.0412$[/tex])

For Sample #2 we have:
- Sample size: [tex]$n_2=57$[/tex]
- Sample mean: [tex]$\bar{x}_2\approx 77.7333$[/tex]
- Sample variance: [tex]$s_2^2\approx 189.4001$[/tex] (with sample standard deviation [tex]$s_2\approx 13.7623$[/tex])

Step 2. Compute the standard error of the difference in means.

The standard error ([tex]$SE$[/tex]) is given by

[tex]$$
SE = \sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}.
$$[/tex]

Substituting the values we obtain

[tex]$$
SE\approx 2.4314.
$$[/tex]

Step 3. Calculate the test statistic.

The test statistic for the difference in means is

[tex]$$
t = \frac{\bar{x}_1 - \bar{x}_2}{SE}.
$$[/tex]

Substituting the values:

[tex]$$
t = \frac{77.1768 - 77.7333}{2.4314} \approx -0.2289.
$$[/tex]

Step 4. Determine the degrees of freedom.

For Welch’s [tex]$t$[/tex]–test the degrees of freedom are approximated by

[tex]$$
df = \frac{\left(\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1-1}+\frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2-1}}.
$$[/tex]

Evaluating this gives approximately

[tex]$$
df\approx 109.5487.
$$[/tex]

Step 5. Compute the p–value.

Since the alternative hypothesis is [tex]$H_a:\mu_1<\mu_2$[/tex], we need the one–tailed p–value:

[tex]$$
p\text{-value}=P(T < t) \quad \text{where} \quad T\sim t_{df}.
$$[/tex]

With [tex]$t\approx -0.2289$[/tex] and [tex]$df\approx109.5487$[/tex], the resulting p–value is

[tex]$$
p\text{-value}\approx 0.4097.
$$[/tex]

Thus, the final answers (rounded appropriately) are:

Test statistic [tex]$= -0.229$[/tex]
[tex]$$
p\text{-value}= 0.4097.
$$[/tex]

Since the p–value exceeds the significance level of [tex]$0.01$[/tex], we would not reject the null hypothesis that the two population means are equal.

Other Questions